Large-amplitude undulatory fish swimming: fluid mechanics coupled to internal mechanics.

نویسندگان

  • T J Pedley
  • S J Hill
چکیده

The load against which the swimming muscles contract, during the undulatory swimming of a fish, is composed principally of hydrodynamic pressure forces and body inertia. In the past this has been analysed, through an equation for bending moments, for small-amplitude swimming, using Lighthill's elongated-body theory and a 'vortex-ring panel method', respectively, to compute the hydrodynamic forces. Those models are outlined in this review, and a summary is given of recent work on large-amplitude swimming that has (a) extended the bending moment equation to large amplitude, which involves the introduction of a new (though probably usually small) term, and (b) developed a large-amplitude vortex-ring panel method. The latter requires computation of the wake, which rolls up into concentrated vortex rings and filaments, and has a significant effect on the pressure on the body. Application is principally made to the saithe (Pollachius virens). The calculations confirm that the wave of muscle activation travels down the fish much more rapidly than the wave of bending.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Environmental Effects on Undulatory Locomotion in the American Eel Anguilla Rostrata: Kinematics in Water and on Land

Historically, the study of swimming eels (genus Anguilla) has been integral to our understanding of the mechanics and muscle activity patterns used by fish to propel themselves in the aquatic environment. However, no quantitative kinematic analysis has been reported for these animals. Additionally, eels are known to make transient terrestrial excursions, and in the past it has been presumed (bu...

متن کامل

Mechanics of Undulatory Swimming in a Frictional Fluid

The sandfish lizard (Scincus scincus) swims within granular media (sand) using axial body undulations to propel itself without the use of limbs. In previous work we predicted average swimming speed by developing a numerical simulation that incorporated experimentally measured biological kinematics into a multibody sandfish model. The model was coupled to an experimentally validated soft sphere ...

متن کامل

The physiology and mechanics of undulatory swimming: a student laboratory exercise using medicinal leeches.

The medicinal leech is a useful animal model for investigating undulatory swimming in the classroom. Unlike many swimming organisms, its swimming performance can be quantified without specialized equipment. A large blood meal alters swimming behavior in a way that can be used to generate a discussion of the hydrodynamics of swimming, muscle mechanics, hydrostatic skeletons, and the physiologica...

متن کامل

Undulatory Swimming: How Traveling Waves Are Produced and Modulated in Sunfish (lepomis Gibbosus)

We have developed an experimental procedure in which the in situ locomotor muscles of dead fishes can be electrically stimulated to generate swimming motions. This procedure gives the experimenter control of muscle activation and the mechanical properties of the body. Using pumpkinseed sunfish, Lepomis gibbosus, we investigated the mechanics of undulatory swimming by comparing the swimming kine...

متن کامل

Automatic control: the vertebral column of dogfish sharks behaves as a continuously variable transmission with smoothly shifting functions.

During swimming in dogfish sharks, Squalus acanthias, both the intervertebral joints and the vertebral centra undergo significant strain. To investigate this system, unique among vertebrates, we cyclically bent isolated segments of 10 vertebrae and nine joints. For the first time in the biomechanics of fish vertebral columns, we simultaneously characterized non-linear elasticity and viscosity t...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • The Journal of experimental biology

دوره 202 Pt 23  شماره 

صفحات  -

تاریخ انتشار 1999